Assignment 3 (Sol.)

Introduction to Machine Learning
Prof. B. Ravindran

1. In building a linear regression model for a particular data set, you observe the coefficient of
one of the features having a relatively high negative value. This suggests that

(a) This feature has a strong effect on the model (should be retained)
(b) This feature does not have a strong effect on the model (should be ignored)

(¢) It is not possible to comment on the importance of this feature without additional infor-
mation

Sol. (¢)

A high magnitude suggests that the feature is important. However, as was discussed in the
lectures, it may be the case that another feature is highly correlated with this feature and it’s
coeflicient also has a high magnitude with the opposite sign, in effect cancelling out the effect
of the former. Thus, we cannot really remark on the importance of a feature just because it’s
coefficient has a relatively large magnitude.

2. The model obtained by applying linear regression on the identified subset of features may differ
from the model obtained at the end of the process of identifying the subset during

Best-subset selection
Forward stepwise selection
Forward stagewise selection
All of the above

Sol. (c)

Let us assume that the data set has p features among which each method is used to select
k,0 < k < p, features. If we use the selected k features identified by forward stagewise selection,
and apply linear regression, the model we obtain may differ from the model obtained at the end
of the process of applying forward stagewise selection to identify the k features. This is due to
the manner in which the coefficients are built in this method where at each step the algorithm
computes the simple linear regression coefficient of the residual on the variable identified as
having the largest correlation with the residual, and adds it to the current coefficient for that
variable. Note that there will be no difference in the other two methods, because in both
forward and backward stepwise selection, at each step of removing/adding a feature, linear
regression is performed on the retained subset of features to learn the coeflicients.

3. We have seen methods like Ridge and lasso to reduce variance among the co-efficients. We can
use these methods to do feature selection also. Which one of them is more appropriate?

(a) Ridge
(b) Lasso



Sol. (b)

For feature selection, we would prefer to use lasso since solving the optimisation problem when
using lasso will cause some of the coefficients to be exactly zero (depending of course on the
data) whereas with ridge regression, the magnitude of the coefficients will be reduced, but
won’t go down to zero.

. Given the following 3D input data, identify the principal component.
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(Steps: center the data, calculate the sample covariance matrix, calculate the eigen vectors
and eigen values, identify the principal component)

(a) 0.9138
-0.1035
0.3926

(b) -0.2617
0.5891
0.7645

(c) -0.4205
-0.6223
0.2342

(d) -0.3105
-0.8014
0.5112

Sol. (d)

Center the data:
-2.0000 -5.4000 4.0000
-1.0000 -2.4000 1.0000
0 0.6000 -1.0000
1.0000 4.6000 -1.0000
2.0000 2.6000 -3.0000

Find the covariance matrix (((x — p)'(z — p))/(n —1)):
2.5000 5.7500 -4.0000

5.7500 15.8000 -9.2500

-4.0000 -9.2500 7.0000

Solve characteristic equation to obtain the eigen values and eigen vectors
Figen values:

0.1298

1.2415

23.9287



Eigen vectors:

0.9138 -0.2617 -0.3105
-0.1035 0.5891 -0.8014
0.3926 0.7645 0.5112

Select the principal component, i.e., the eigen vector corresponding to the largest eigen vlaue:
-0.3105
-0.8014
0.5112

. For the data given in the previous question, find the transformed input along the first two
principal components.

(a) 6.9935 0.3021
2.7451 -0.2727
-0.9921 -0.4548
-4.5081 0.0449
-4.2383 0.3805

(b) 6.9935 0.4003
2.7451 -0.3876
-0.9921 -0.4110
-4.5081 1.6837
-4.2383 -1.2853

(c) 0.4003 0.3021
-0.3876 -0.2727
-0.4110 -0.4548
1.6837 0.0449
-1.2853 0.3805

(d) 3.4894 7.2079
-0.7590 6.4200
-4.4962 6.3966
-8.0122 8.4913
-7.7424 5.5223

Sol. (b)

Project the mean centered data points along the first two principal components by multiplying
the 5x3 mean centered data matrix with the 3x2 matrix composed of the two eigen vectors
which correspond to the two highest eigen values.

. Suppose you are only allowed to use binary logistic classifiers to solve a multi-class classification
problem. Given a training set with 2 classes, this classifier can learn a model, which can then
be used to classify a new test point to one of the 2 classes in the training set. You are now
given a 6 class problem along with its training set, and have to use more than one binary
logistic classifier to solve the problem, as mentioned before. You propose the following scheme
(also known as one vs one approach in ML terminology) - you will first train a binary logistic
classifier for every pair of classes. Now, for a new test point, you will run it through each
of these models, and the class which wins the maximum number of pairwise contests, is the



predicted label for the test point. How many binary logistic classifiers will you need to solve
the problem using your proposed scheme?

Sol. (b)
Since we need a binary logistic classifier for each pair of classes, the number of classifiers
required = (g) = 15.

. With respect to Linear Discriminant Analysis, which of the following is/are true.
(Consider a two class case)

(a) When both the covariance matrices are spherical and equal, the decision boundary will
be the perpendicular bisector of the line joining the means.

(b) When both the covariance matrices are spherical and equal, the decision boundary will
be perpendicular to the line joining the means.

(¢) When both the covariance matrices are spherical and equal and the priors m; = w5 then
the decision boundary will be perpendicular bisector of the line joining the means.

Sol. (b) & (c)
The first statement is not true because unequal priors can cause the decision boundary to shift
away form the center of the line joining the two means.

. For a two class classification problem, which among the following are true?

(a) In case both the covariance matrices are spherical and equal, the within class variance
term has an effect on the LDA derived direction.

(b) In case both the covariance matrices are spherical and equal, the within class variance
term has no effect on the LDA derived direction.

(c¢) In case both the covariance matrices are spherical but unequal, the within class variance
term has an effect on the LDA derived direction.

(d) In case both the covariance matrices are spherical but unequal, the within class variance
term has no effect on the LDA derived direction.

Sol. (b) & (d)

It is easy to see that if the covariance matrix for a particular class is spherical, then the within
class variance is the same along all directions, and hence we can ignore this component and
focus solely on the between class variance (i.e., identify the direction along which the between
class variance is maximised).

. Suppose you are given a two dimensional two class data set as shown below with only two
samples for each class. The dashed curves show the underlying (but unknown) distribution of
each class. Which among the two methods for identifying a one dimensional representation of
the given data would you suggest for building a classifier that will perform well on test data
coming from the same underlying distributions?



v

(a) Linear Discriminant Analysis (LDA)
(b) Principal Components Analysis (PCA)

Sol. (b)
As shown in the following figure, the single dimension identified by PCA is superior to the one

identified by LDA for the purpose of classification if we take into consideration the underlying
class distributions, since the overlap among the points of the two classes would be minimal in

the case of the PCA dimension.

LDAdirection

v

Weka-based assignment questions

The datasets for this assignment are available here.



Dataset 1

This is a synthetic dataset to get you started with Weka. The given dataset is a 1000 point
3-dimensional data with one target variable. Full data is given to you both in csv and arff file
formats. You can load the arff format directly into Weka. In addition to this, we have given
the train and test spilt. Always use the test split to evaluate your model.

The variables are named x1, 2, x3, y. y is the variable to be regressed.
Tasks

Train a linear regressor by disabling regularizing, attribute selection and collinear attribute
elimination. Note the error obtained and coefficients.

Dataset 2 (Prostate Dataset)

This is the Prostate Cancer dataset used in the ESL book. You can read the info file for more
information about the dataset. We have split the data into a train and test split. You should
use the test split to evaluate the model. (When training, select the ”Supplied Test set” and
select the test dataset.

Tasks

(a) Train a unregularized model - Disable the attribute selection, regularization, and co-linear
attribute elimination and run the linear regressor. Note down the mean squared error.

(b) Ridge Regression - We have seen unregularized models till now. Weka implements ridge
regression model for linear regression which we will try. We have to choose the best
parameter lambda for ridge regression. In practice, we do this by searching over a range
of values and see which gives the least cross-validation error. Weka has functions to this
search too. We use CVParameterSearch in the meta functions, and use it to iterate over
the ridge parameter(R) of the Linear Regression model. Iterate over 0 - 50 in steps of
1, use a 5 fold cross-validation. Note down the best value of lambda and corresponding
error.

Dataset 3 (AutoMPG)

This dataset is the AutoMPG dataset from UCI repository. You are given the data in the arff
format. You can load the dataset and see the various attributes in the dataset.You can see
that there are both continuous and discrete attributes. We will now see how to handle such
data. Again here you are given a pre-decided test and train split.

Tasks

(a) Drop non-predictive data - Most real world data sets come with some non-predictive
attributes which one can drop. If you read the dataset description you can see that there
is an attribute called the car name, which is a string. We are sure that this can be
dropped. We have removed this attribute and provided the dataset in the arff format.

(b) One-hot-encoding for the discrete attributes - In the videos, sir has mentioned the issues
with discrete/categorical variables. We will now convert the nominal/discrete/categorical
variables to a binary representation. We can do this using the pre-processing options in
Weka. Under Unsupervised instance based pre-processing options we can find the Nominal
to Binary converter. After performing this, you can notice the increase in the number of
attributes, it creates a new variable for each possible value of the variable.

(Note- When you perform these pre-processing steps, you should also do them on the test



set separately and save as an arff file from Weka, otherwise Weka might find train and
test set incompatible.)

(c) Training - Disable the attribute selection, regularization, and co-linear attribute elimina-
tion and run the linear regressor. Note down the mean squared error.

10. What is the best linear fit for the dataset 17

(a) y=3xaxl+4x224+5*xx3+4
(b) y=—-1xzl1+2+22+5+x23+5
(c) y=21+10x22+4+x3+6

(d) y=16*21+40% 22+ 1523 +4
Sol. (a)

Using the supplied training and test data, Weka should report exactly the model described in
option (a).

11. Consider the prostate cancer dataset, which of the following ridge parameters is best suited?

(a) 0
(b) 2
(c) 14
(d) 20
(e) 100
Sol. (c)

On trying out the different values for the regularisation parameter you should observe that
small values for the regularisation parameter do lead to a decrease in the error when compared
to the model with no regularisation. As we increase the value of the regularisation parameter,
the error decreases until it reaches a minimum after which it starts to increase. Among the
values listed above, the lowest error is observed when the regularisation parameter is set to 14.

12. If we plot the CV-error versus the ridge parameter for the prostate dataset, what is the expected
shape of the curve?

Straight line passing through origin

(a
(b
(¢
(d

Inverted trough

Convex trough

N N

Horizontal line

Sol. (c)
The previous problem suggests the answer. Note that you will observe similar behaviour if
you consider the errors on the dedicated test set rather than the cross validation error.

13. Learn a linear model using ridge regression with lambda of 16. After looking at the learned
model, which of the attribute you think is the best to be dropped?

(a) displacement



(b) acceleration

(c) weight

Sol. (b)

We observe that acceleration has the lowest associated coefficient magnitude among the three
features and hence it would be the best candidate to be eliminated without having too much
of an adverse effect on the model performance (though that will need to be verified).

Note- There was an error in the automated evaluation for this question. We will correct this
and update the scores accordingly.



